3.2.10 \(\int \sec ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\) [110]

Optimal. Leaf size=95 \[ \frac {3 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+a \sin (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} d}-\frac {3 a}{4 d \sqrt {a+a \sin (c+d x)}}+\frac {\sec ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{2 d} \]

[Out]

3/8*arctanh(1/2*(a+a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*2^(1/2)*a^(1/2)/d-3/4*a/d/(a+a*sin(d*x+c))^(1/2)+1/2*s
ec(d*x+c)^2*(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2754, 2746, 53, 65, 212} \begin {gather*} -\frac {3 a}{4 d \sqrt {a \sin (c+d x)+a}}+\frac {3 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a \sin (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} d}+\frac {\sec ^2(c+d x) \sqrt {a \sin (c+d x)+a}}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(3*Sqrt[a]*ArcTanh[Sqrt[a + a*Sin[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(4*Sqrt[2]*d) - (3*a)/(4*d*Sqrt[a + a*Sin[c +
d*x]]) + (Sec[c + d*x]^2*Sqrt[a + a*Sin[c + d*x]])/(2*d)

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2754

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p + 1))), x] + Dist[a*((m + p + 1)/(g^2*(p + 1))), Int
[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2,
0] && GtQ[m, 0] && LeQ[p, -2*m] && IntegersQ[m + 1/2, 2*p]

Rubi steps

\begin {align*} \int \sec ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx &=\frac {\sec ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{2 d}+\frac {1}{4} (3 a) \int \frac {\sec (c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx\\ &=\frac {\sec ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{2 d}+\frac {\left (3 a^2\right ) \text {Subst}\left (\int \frac {1}{(a-x) (a+x)^{3/2}} \, dx,x,a \sin (c+d x)\right )}{4 d}\\ &=-\frac {3 a}{4 d \sqrt {a+a \sin (c+d x)}}+\frac {\sec ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{2 d}+\frac {(3 a) \text {Subst}\left (\int \frac {1}{(a-x) \sqrt {a+x}} \, dx,x,a \sin (c+d x)\right )}{8 d}\\ &=-\frac {3 a}{4 d \sqrt {a+a \sin (c+d x)}}+\frac {\sec ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{2 d}+\frac {(3 a) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+a \sin (c+d x)}\right )}{4 d}\\ &=\frac {3 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+a \sin (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} d}-\frac {3 a}{4 d \sqrt {a+a \sin (c+d x)}}+\frac {\sec ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.26, size = 271, normalized size = 2.85 \begin {gather*} \frac {\left (-2-(3-3 i) \sqrt [4]{-1} \tanh ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \sec \left (\frac {d x}{4}\right ) \left (\cos \left (\frac {1}{4} (2 c+d x)\right )+\sin \left (\frac {1}{4} (2 c+d x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {2 \sin \left (\frac {d x}{2}\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}{\left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {\left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}{\left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}\right ) \sqrt {a (1+\sin (c+d x))}}{4 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

((-2 - (3 - 3*I)*(-1)^(1/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*Sec[(d*x)/4]*(Cos[(2*c + d*x)/4] + Sin[(2*c + d*x)/
4])]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) + (2*Sin[(d*x)/2]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))/((Cos[c/2]
 - Sin[c/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2) + ((Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] + Sin[(c + d*
x)/2]))/((Cos[c/2] - Sin[c/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])))*Sqrt[a*(1 + Sin[c + d*x])])/(4*d*(Cos[(
c + d*x)/2] + Sin[(c + d*x)/2])^2)

________________________________________________________________________________________

Maple [A]
time = 0.57, size = 90, normalized size = 0.95

method result size
default \(\frac {2 a^{3} \left (-\frac {\frac {\sqrt {a +a \sin \left (d x +c \right )}}{2 a \sin \left (d x +c \right )-2 a}-\frac {3 \sqrt {2}\, \arctanh \left (\frac {\sqrt {a +a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{4 \sqrt {a}}}{4 a^{2}}-\frac {1}{4 a^{2} \sqrt {a +a \sin \left (d x +c \right )}}\right )}{d}\) \(90\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*a^3*(-1/4/a^2*(1/2*(a+a*sin(d*x+c))^(1/2)/(a*sin(d*x+c)-a)-3/4*2^(1/2)/a^(1/2)*arctanh(1/2*(a+a*sin(d*x+c))^
(1/2)*2^(1/2)/a^(1/2)))-1/4/a^2/(a+a*sin(d*x+c))^(1/2))/d

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 117, normalized size = 1.23 \begin {gather*} -\frac {3 \, \sqrt {2} a^{\frac {3}{2}} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {a \sin \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {a \sin \left (d x + c\right ) + a}}\right ) + \frac {4 \, {\left (3 \, {\left (a \sin \left (d x + c\right ) + a\right )} a^{2} - 4 \, a^{3}\right )}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}} - 2 \, \sqrt {a \sin \left (d x + c\right ) + a} a}}{16 \, a d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/16*(3*sqrt(2)*a^(3/2)*log(-(sqrt(2)*sqrt(a) - sqrt(a*sin(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(a*sin(d*x +
 c) + a))) + 4*(3*(a*sin(d*x + c) + a)*a^2 - 4*a^3)/((a*sin(d*x + c) + a)^(3/2) - 2*sqrt(a*sin(d*x + c) + a)*a
))/(a*d)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 99, normalized size = 1.04 \begin {gather*} \frac {3 \, \sqrt {2} \sqrt {a} \cos \left (d x + c\right )^{2} \log \left (-\frac {a \sin \left (d x + c\right ) + 2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} + 3 \, a}{\sin \left (d x + c\right ) - 1}\right ) + 4 \, \sqrt {a \sin \left (d x + c\right ) + a} {\left (3 \, \sin \left (d x + c\right ) - 1\right )}}{16 \, d \cos \left (d x + c\right )^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/16*(3*sqrt(2)*sqrt(a)*cos(d*x + c)^2*log(-(a*sin(d*x + c) + 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*sqrt(a) + 3*a
)/(sin(d*x + c) - 1)) + 4*sqrt(a*sin(d*x + c) + a)*(3*sin(d*x + c) - 1))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )} \sec ^{3}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(c + d*x) + 1))*sec(c + d*x)**3, x)

________________________________________________________________________________________

Giac [A]
time = 6.33, size = 112, normalized size = 1.18 \begin {gather*} -\frac {\sqrt {2} \sqrt {a} {\left (\frac {2 \, {\left (3 \, \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2\right )}}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )} - 3 \, \log \left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) + 3 \, \log \left (-\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )\right )} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{16 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/16*sqrt(2)*sqrt(a)*(2*(3*cos(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 2)/(cos(-1/4*pi + 1/2*d*x + 1/2*c)^3 - cos(-1/4
*pi + 1/2*d*x + 1/2*c)) - 3*log(cos(-1/4*pi + 1/2*d*x + 1/2*c) + 1) + 3*log(-cos(-1/4*pi + 1/2*d*x + 1/2*c) +
1))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {a+a\,\sin \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^(1/2)/cos(c + d*x)^3,x)

[Out]

int((a + a*sin(c + d*x))^(1/2)/cos(c + d*x)^3, x)

________________________________________________________________________________________